A Novel Flexible Room Temperature Ethanol Gas Sensor Based on SnO2 Doped Poly-Diallyldimethylammonium Chloride

نویسندگان

  • Shuang Zhan
  • Dongmei Li
  • Shengfa Liang
  • Xin Chen
  • Xia Li
چکیده

A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV Light Activation of TiO2-Doped SnO2 Thick Film for Sensing Ethanol at Room Temperature

TiO2-doped SnO2 nanopowder is synthesized via a sol-gel method and characterized by atomic force microscopy and X-ray diffraction. Using this nanopowder, we have fabricated a novel semiconductor gas sensor that is sensitive to UV light illumination. We find that gas-sensing properties of TiO2-doped SnO2 sensor can be enhanced significantly under the exposure of UV light. The sensor exhibits a h...

متن کامل

Sensitive and Selective Ammonia Gas Sensor Based on Molecularly Modified SnO2 †

The development of selective and cheap metal oxide gas sensor at ambient temperature is still a challenging idea. In this study, SnO2 surface functionalization was performed in order to obtain sensitive and selective gas sensor operated at ambient temperature. 3-aminopropyltriethoxysilane (APTES) was used as an intermediate step, followed by functionalization with molecules having acyl chloride...

متن کامل

Synthesis and high sensing properties of a single Pd-doped SnO2 nanoribbon

Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to...

متن کامل

The Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications

ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...

متن کامل

The Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications

ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013